
TECHNICAL NOTES AND SHORT PAPERS 

An Application of Cyclic Reduction to Ritz Type 
Difference Equations 

By A. K. Rigler 

1. Introduction. Iterative methods are often preferred over direct methods for 
solving the large systems of linear algebraic equations which arise in the finite 
difference approximation of boundary value problems for elliptic partial differential 
equations. An important reason for this preference is that the nonzero elements of 
the coefficient matrix are quite sparse, occurring in narrow bands along and parallel 
to the main diagonal. Since an iterative method such as successive over-relaxation 
leaves the coefficient matrix unchanged, it imposes a comparatively modest require- 
ment on computer storage capacity. 

A procedure introduced by Schroder [4] reduces the number of unknowns and 
improves the convergence rate of relaxation methods applied to the reduced prob- 
lem. Called "cyclic reduction" by Varga [5] and "decomposition" by Collatz [1], 
its essential feature is the transformation of the coefficient matrix to a block tri- 
angular form. Hageman [3] proves that a block Gauss-Seidel solution of the reduced 
system must converge in fewer steps than a block Gauss-Seidel solution of the 
original. The technique is quite fruitful in improving the efficiency of finite difference 
solutions of potential and diffusion type problems. However, in solving some 
problems, for example equations with mixed derivatives, the reduction may be 
impractical for the following reason. The sparseness of the original coefficient 
matrix does not necessarily imply that the reduced coefficient matrix will be sparse; 
possibly the reduction would increase both the number of coefficients to be stored 
and the niumberl of arithmetic operations required to complete the solution. 

It is the purpose of this paper to show that equations derived for self-adjoint 
second order elliptic systems by using the Ritz method as described by Friedrichs 
[2] can be reduced without these adverse side effects. 

2. Reduction of the Coefficient Matrix. Let the original set of linear algebraic 
equations be partitioned in the form 

F D1 -B] Fu,l Fui] 

(1)-L'Bt DAj L_U2i L_g2i 

Equation (1) is multiplied by the matrix 

I, 0 

___ BtD21 IY] 
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to give 

-Di -B ilul i 11 
0 D2 - BtDJ1B LU2j L92 + BtD lgi j 

The reduced problem is 

(2) (D2 - BtD 1B)u2 = 92 + BtD1 gi. 

It can be shown [3] that the coefficient matrix of (2) is symmetric and positive 
definite whenever the coefficient matrix of (1) is symmetric and positive definite. 

The usefulness of (2) in practical computation depends upon the nature of 
D1-', The matrices D1, D2, and B will consist of a single band each of nonzero 
entries. In Hageman's examples it is pointed out that BtB is also a sparse matrix. 
However, Di-' is not necessarily sparse so that BtDl 1B may have no zero entries 
at all. Of course, if D1 is diagonal, the reduction is profitable since the reduced 
coefficient matrix will certainly be sparse. In this case, the reduction is equivalent 
to the use of a more accurate difference formula applied to a coarser mesh. 

3. Derivation of the Difference Equations. Self-adjoint elliptic equations are 
often solved by a direct attack on an associated variational problein. For second 
order equations, one can apply the Ritz method, restricting the trial function to be 
continuous and linear in triangles. Friedrichs [2] makes use of this method and 
imposes the additional requirement that the triangles be oriented in a special way. 

A rectangular mesh, not necessarily uniform, is placed over the region. The 
mesh poinlts are separated inlto two classes in the manner of a checkerboard. Each 
meslh rectangle is divided into two triangles by the diagonal connecting the "black" 
corners. Thus each triangle has its 900 vertex at a "red" point while the acute angle 
vertices are at black points. This is illustrated in Figure 1. 

With the triangle oriented as in Figure 2, the trial function within that triangle 
is 

(3) U = U,j + (ui+ij - Ui (x - xi,) + (uij+l - u) (y -yij), 

where i, j, h, k are identified in the figure. 
The integrand of the integral to be minimized is a quadratic form in u, u', 

and u, so that over each triangle the integral has no more than three parameters 
to adjust; in Figure 2 they are usj, ui+,,j, and ui,j+i . 

It is evident from F'igure 1, that the unknowns at red points are coupled only 
to unknowns at black points while unknowns at black points are coupled to both 
red and black unknowns. By identifying in (1) the partitions 1 and 2 with red 
and black points respectively, one can be assured that the reduction can profitably 
be applied. D1 is a strictly diagonal matrix when only one equation is involved and 
when derived from a system of m equations D1 is the direct sum of m X m blocks. 
Hence Di1- has the same simple form as D1 . 

4. An Example. To illustrate the method of reduction in a situation where more 
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conventional finite difference equations cannot be reduced, a differential operator 
which includes a mixed derivative was chosen. Let 

L (u) =Uxx + 2buxy + UYY 

be the differential operator, where b is constant and b2 < 1. On a uniform mesh, 
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Taylor's series might be used to generate the difference stencil 

-b b 
2 2 

1 -4 1 u 

b b 
12-2 

as an approximation to h2L(u) to be applied at each mesh point. 
The quadratic portion of the variational integral corresponding to L(u) is 

J(u) = 1f (u.2 + 2buxu, + u,2) dx dy. 

Application to J(u) of the Ritz method as described in ?3 produces two distinct 
Ritz type difference equations. The stencils are 

1 

(4) 1 -4 1 u 

to be applied at red points and 

-b 1 b 

(5) 1 -4 1 u 

b 1 -b 

to be applied at black points. 
The reduced equations (3) are exactly those produced by applying the stencil 

1 

(6) , -3 u 

-~~~~~~~ 

at black points only. 
It is interesting to note that neither (4) nor (5) are adequate finite difference 

representations of h2L(u) but the result of reduction (6) is a satisfactory repre- 
sentation of 2h2L (u). 
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In conclusion, it is emphasized that the reduction procedure is always successful 
when applied to Ritz type difference equations; no claims are made about the 
relative merits of Ritz type difference equations compared to conventional equations 
in their accuracy in approximating the true solution. 
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A Two Parameter Test Matrix 

By P. J. Eberlein 

1. Introduction. The (N + 1) X (N + 1) matrix A given by (1) below arose 
from a problem in the chemical theory of gases [1], the physically significant cases 
occurring when the parameter s = 0, 1, 2, . . Since the eigenvalues* and eigen- 
vectors of A are found explicitly, the matrix is of interest in itself as a test matrix 
for eigenvalue programs, especially for negative real s: when s =-2, -3, . - 2N, 
the matrix is defective with two or more pairs of eigenvectors coalescing; elsewhere 
in the range - 2N < s < -2 at least one pair of eigenvectors is nearly parallel. 
In this range, the positive roots of the characteristic polynomial are ill-conditioned, 
especially for s < - (N + 1). 

The matrix, its eigenvalues, and its right and left eigenvectors are given in 
section 2; a few numerical experimients are described in section 3. 

2. The Matrix. Let 

-N N+s 0 0 

N -(3N + s-2) 2(N + s-) 0 

(1) A = (aij)= 0 2(N-1) -(5N + 2s-8) 3(N+s-2) 0 

0 0 3(N-2) 

Received February 1, 1963, revised November 10, 1963. 
* Conjectured by Brauner and Wilson. 


